
Abstract

Automated language processing is central to the drive to enable facilitated referencing of increasingly available Sanskrit E-texts. The first step towards processing Sanskrit text involves the handling of Sanskrit compound words that are an integral part of Sanskrit texts. This firstly necessitates the processing of euphonic conjunctions or sandhi-s, which are points in words or between words, at which adjacent letters coalesce and transform. The ancient Sanskrit grammarian Pānini's codification of the Sanskrit grammar is the accepted authority in the subject. His famed sūtra-s or aphorisms, numbering approximately four thousand, tersely, precisely and comprehensively codify the rules of the grammar, including all the rules pertaining to sandhi-s.

This work presents a fresh new approach to processing sandhi-s in terms of a computational schema. This new computational model is based on Pāninini's complex codification of the rules of grammar. The model has simple beginnings and is yet powerful, comprehensive and computationally lean.

Keywords: Sanskrit, euphonic conjunction, sandhi, linguistics, Panini, aphorism, sutra.

1. Introduction

The recognition of Sanskrit as a highly phonetic language as also one with an extensively codified grammar [1], is widespread. The very name Samskrt (Sanskrit) means "language brought to formal perfection". That the BackusNaur Form used in the specification of formal languages, has now come to be popularly known as the Pānini-Backus Form [8, 9], bears ample testimony to this fact.

Sanskrit E-texts are being increasingly made available for reference in repositories such as the Göttingen Register of Electronic Texts in Indian Languages (GRETIL) [11]. Nou the essential first step towards language processing of such Sanskrit E-texts is to develop efficient algorithms and Rools to handle segmentation in Sanskrit compound wards that are an integral part of Sanskrit texts. This firstly
necessitates the processing of sandhi-s or euphonic conjunctions.

1.1 Unicode Representation

The Unicode (UTF-8) standard is what has been adopted universally for the purpose of encoding Indian language texts into digital format. The Unicode Consortium has assigned the Unicode hexadecimal range 0900-097F for Sanskrit characters.

All characters including the diacritical characters used to represent Sanskrit letters in E-texts are found dispersed across the Basic Latin (0000-007F), Latin-1 Supplement ($0080-00 \mathrm{FF}$), Latin Extended-A ($0100-017 \mathrm{~F}$) and Latin Extended Additional (1E00 - 1EFF) Unicode ranges.

The Latin character set has been employed in this work to represent Sanskrit letters as E-text. Moreover in this paper, any Sanskrit text except the names of people is given in italics. As such, variables such as x, y and z are not italicized as per the norm.

1.2 The Basis of the Work

Pānini, the sage and scholar dated by historians in the fourth century $5 \mathcal{F e}$ or earlier, codified the rules of the Sanskrit lange based on both the extant vast literature as well as the language in prevalent use at the time. His magnuments, the Asț $\bar{d} d h y \bar{a} y \bar{\imath}$, which literally means 'work in eigb@ihapters', is regarded by all scholars as the ultimate authority on Sanskrit grammar. In four parts each, these eigח-chapters comprise nearly four thousand sūtra-s or aphprisms, terse statements in Sanskrit. This grammarQdification of Pānini is perhaps unparalleled, for it is terse 2nd yet comprehensive, complex yet precise. Intensive study, taking recourse to authoritative commentaries authored by adroit grammarians, is required to get a grasp of the work.

Many commentaries on the Asṭādhyāy $\bar{\imath}$, such as Sage Patañjali's Mahābhāṣya are available and held as authentic
and comprehensive. One such authoritative commentary with a neat, topic-wise classification of Pānini's aphorisms, is the Siddhānta-kaumud $\bar{\imath}$ [2] written in the seventeenth century by the Sanskrit grammarian, Bhatṭoji Dīkṣita. The most important of these aphorisms were later extracted and compiled into the Laghu-siddhānta-kaumud̄̄ [10] by the scholar Varadarāja.
It is accepted among Sanskrit scholars that any exploratory work on Sanskrit grammar must necessarily have the aphorisms of Pānini as its basis, optionally taking recourse to any of the authoritative commentaries. This work on euphonic conjunctions is also based directly on Pānini's aphorisms, and not on secondary or tertiary sources of information. The Siddhānta-kaumud̄̄ of Bhatṭoji Dīkṣita, famed and accepted amongst scholars as an unabridged, comprehensive compendium of the entire Asțādhy $\bar{a} y \bar{l}$, has been studied in the original Sanskrit, and the euphonic conjunctions dealt with in it form the basis of this work. The Laghu-siddhānta-kaumudī was also initially consulted for insights.

1.3 The Mäheśvara aphorisms - the backbone of Pānini's code

The Māheśvara aphorisms, said to have come from the beats of a special drum called 'damaru' (hourglass drum) held in the hand of Lord Maheśvara (a form of God in the Hindu pantheon), are a set of aphorisms containing the letters of the Sanskrit alphabet in a certain sequence. These aphorisms form the basis of Pāṇini's composition of his grammar aphorisms. The Māheśvara aphorisms are fourteen in number and are listed below:

1. $a-i-u-n$
2. $r-l-k$
3. $e-o-\dot{n}$
4. ai-au-c
5. ha-ya-va-ra-t
6. la-n
7. $\tilde{n} a-m a-n ் a-n a-n a-m$
8. jha-bha-n
9. gha-dha-dha-s
10. ja-ba-ga-da-da-ś
11. kha-pha-cha-tha-tha-ca-ta-ta-v
12. ka-pa-y
13. śa-sa-sa-r
14. $h a-l$

The last letter in each of the abo phorisms is only a place-holder and is not counted as an actual letter of the aphorism. The first four aphorisms list the short forms of all the vowels, while the rest list the consonants. It must be noted that the letter ' a ' added to each of the consonants is only to facilitate pronunciation and is not part of the consonant proper.

2. The Problem

Sandhi-s in Sanskrit are points in words or between words, at which adjacent letters coalesce and transform. This is a common feature of Indian languages and is particularly elaborately dealt with and used in Sanskrit. The
transformations that apply are commonly categorized into four:

1. $\bar{a} g a m a$ - addition of an extra letter or set of letters
2. $\bar{a} d e s ́ a-$ substitution of one or more of the letters
3. lopa-dropping of a letter
4. prakrtibhāva - no change
(The last is considered a transformation in the language and has therefore been listed above. However, it may be ignored for practical purposes and is hence not covered in this work.)
There are close to seventy aphorisms of Pānini that deal with sandhi-s. These aphorisms lay out the rules for the above transformations, giving the conditions under which certain letters combine with certain others to give particular results.

The challenge is to develop a computational algorithm to handle the entire range of sandhi-s. Such a computational algorithm would be useful to generate various word forms of a given Sanskrit word through the application of sandhi rules. Though this task is not difficult for a scholar of Sanskrit with a thorough knowledge of the Pāṇinian system, it is certainly a computationally non-trivial task, given the complexity and number of rules.
Existing methods of sandhi processing, be they methods to form compoupwords or even to try to split them, seem to be based on 2derived understanding of the functioning of euphonic conjunctions, and usually go the finite automata-HMM-arnicial intelligence way [3-7, 12]. However, the presen1 work directly codifies Pāṇini's rules as is, recostizing that Pānini's codification of the grammar is based on the Mäheśvara aphorisms that in turn lay out the leters of the alphabet in a non-trivial order. This work presents one novel method of directly representing Pānini's sandhi rules. It presents, on this basis, a mathematical formulation of a new approach to solving the non-trivial problem of handling euphonic conjunctions.

3. The Approach

To take advantage of the ordering of letters of the alphabet given in 2.3 above, we assign values to each letter in the Sanskrit alphabet, sticking to the order in the Māheśvara aphorisms rather than to the commonly adopted ordering of the letters. Thus, we have the assignment of values for the letters of the alphabet shown in Table 1.

Table 1: Values for the letters of the Sanskrit alphabet

Letter Value Letter Value Letter Value

a	$\mathbf{1}$	l	$\mathbf{1 8}$	$p h$	35
\bar{a}	2	\tilde{n}	19	$c h$	36
i	3	m	20	$t h$	37
\bar{l}	4	\dot{n}	21	$t h$	38
u	5	n	22	c	39
\bar{u}	$\mathbf{6}$	n	23	t	$\mathbf{4 0}$
r	7	$j h$	24	t	41
\bar{r}	$\mathbf{8}$	$b h$	25	k	$\mathbf{4 2}$
l	$\mathbf{9}$	$g h$	26	p	43
e	$\mathbf{1 0}$	$d h$	27	s	44
o	11	$d h$	28	s	45

$a u$	13	b	30	h	47
h	14	g	31	\dot{m}	48
y	15	d	32	h	49
v	16	d	33	,	50
r	17	$k h$	34	$r u$	51

Further, the letters are clubbed into various types as given below:

1. vowels: $1-13$
2. consonants: $14-47$
3. semi-vowels: $15-18$
4. mutes: 19-47
5. nasals: $19-23$
6. non-nasal mutes: 24-47
7. soft consonants: $24-33$
8. hard consonants: 34-46
9. column 1: 39-43
10. column 2: $34-38$
11. column 3: $29-33$
12. column 4: $24-28$
13. sibilants: $44-46$
14. aspirate: 14 and 47
15. anusvāra: 48
16. visarga: 49
17. avagraha: 50 (replacement for the first vowel)
18. $r u$: 51 (denotes the letter r but is handled differently)
19. gutturals: $42,34,31,26,21$
20. palatals: $39,36,29,24,19$
21. cerebrals: $40,37,32,27,22$
22. dentals: $41,38,33,28,23$
23. labials: $43,35,30,25,20$

A rule is the name we use for letter-level conjunctions such as the following of the savarnadīrgha type: $a+\bar{a}=\bar{a}$ where the symbol '+' denotes adjacency and the term on the dight of the ' $=$ ' symbol is the resultant term that has to be either substituted for or added to ones on the left. (In therease of this particular sandhi, the term on the right is the single substitute for both terms on the left.) Substitithg values of letters from Table 1, this would translate into $+2=2$.
Each sandhi may have more than one goerning aphorism that specifies its functioning. Each suopaphorism for every sandhi type in turn expands into series of 'rules' as defined above. In this work, each and every rule for each aphorism under each of the major twenty three sandhi types were listed. Further, an aphorism would specify if an addition, deletion or substitution would have to be made. In accordance with this, a further cataloguing of aphorisms into five categories was done.

If we denote a sandhi rule as $\mathrm{x}+\mathrm{y}=\mathrm{z}$ where variables x and y denote the values of single letters joining together to yield a resultant z, then we have the following categorizations depending on both the characteristics of z and on what we actually do with it:
C_{1} : replace x and y with single-letter or multi-letter z
\mathbf{C}_{2} : replace x with single-letter or multi-letter z
C_{3} : replace y with single-letter z
C_{4} : add single-letter z
C_{5} : drop x

Table 2 gives the summary of the numbers involved in this scenario. It must be noted that in practice, some aphorisms have to be combined or handled in two different ways to yield sets of rules, and hence what may seem to be a discrepancy in the number of aphorisms shown in the table and the number of rows shown for the rules of that aphorism, is no real discrepancy at all.
As can be seen, there are close to 2500 individual rules involved, even with considering only the major sandhi-s. Tabulation of these rules in terms of x, y and z for the categories and then tabulation of the corresponding values as per Table 1 were done.

Table 2: Summary of the number of Sanskrit sandhi aphorisms and rules

\#	Sandhi Type	No. of sūtra-s	Categories					$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Rules } \end{gathered}$
			C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	
1	yaṇādeśa	1		74				74
2	ayāyāvāvādeśa	4		50				50
				2				2
				3				3
3	guṇa		8					8
			18					18
4		3	8					8
			18					18
			10					10
5	paralūpa	1	10					10
6	savernadìrgha	1	15					15
7	P) ${ }^{\text {r }}$ \%arūpa	1	2					2
8	-vañādeśa	1		13				13
	tugāgam	4				13		13
	tugagama					1		1
	jaśtva	2		23				23
				240				240
11	satva	2		5				5
				230				230
				138				138
12	anusvāra	5		34				34
				24				24
				1				1
				3				3
13	dhuḍāgama	2				2		2
14	̇̇amudāgama	1				195		195
15	ścutva	2		36				36
					31			31
16	sțutva	3		31				31
					6			6
17	anunāsikā	1		160				160
18	cartva	1		312				312
19	parasavarna	3		29				29
				5				5
20	pūrvasavarṇa	1			20			20
21	chatva	1			340			340
22	visarga	2		13				13
				13				13
23	$s v a ̄ d i$	5					66	66
							13	13
							132	132
							33	33
							33	33
TOTAL		49	89	1439	397	211	277	2413

Careful observations based on a thorough understanding of the domain and classification of the input conditions, yielded the equations presented in this work.

We define the general binary operators $\oplus_{1}, \oplus_{2}, \oplus_{3}, \oplus_{4}$ and \oplus_{5} for the categories $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and C_{5} respectively, as follows:
$\mathrm{C}_{1}: \oplus_{1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}$
$\mathrm{C}_{2}: \oplus_{2}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$
$\mathrm{C}_{3}: \oplus_{3}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{xz}_{3}$
$\mathrm{C}_{4}: \oplus_{4}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{xz}_{4} \mathrm{y}$
$\mathrm{C}_{5}: \oplus_{5}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$
where each of $z_{1}, z_{2}, z_{3}, z_{4}$ is to be calculated. Now we introduce the second and third subscripts for the above general operators as follows: the general operator $\oplus_{i, j}(x, y)$ is derived from \oplus_{i} and signifies the operator applying to aphorism number j of Category C_{i}; the specialized operator $\oplus_{\mathrm{i}, \mathrm{j}, \mathrm{k}}(\mathrm{x}, \mathrm{y})$ is derived from the operator $\oplus_{\mathrm{i}, \mathrm{j}}$ and appertains to the $\mathrm{k}^{\text {th }}$ equation for the $\mathrm{j}^{\text {th }}$ aphorism of Category C_{i}, These two extra subscripts are necessitated by the facts that a category encompasses many aphorisms and one aphorism may itself be governed by more than one equation.

4. Results and Discussion

The main sandhi aphorisms, their brief description (Rule), the corresponding general operator and the final, specialized equations along with the domain of operation are given below in a category-wise listing. Special notations followed are:

- The equations and conditions given as operators with three subscripts are the ones that are implementable. The 'general operator' specified for each aphorism typifies the aphorism's meaning and all the conditions it becomes operative under, and provides a generalization from which the final equations are specialized. A specialized operator would thus override the 'general operator' with its own specialized conditions.
- The variable X denotes the sequence of leates culminating in x ; the variable Y denotes the sedyen of letters starting with y. These are used $\nless /$ depict special conditions that pertain to the entire word involved in the sandhi.
- Variables u and w represent the valu@or the letter occurring just before x and just after yrespectively.
- [] are used to club domain conditi@osimply in order to depict the 'or' condition more chanly.

4.1 C 1 Sandhi-s

guna sandhi

1. $\bar{a} d g u n ̣ a h ~||~ 6.1 .87 ~|| ~$

Rule
\ldots __: a or \bar{a} followed by i, u (short and long) -> guna $\overline{\text { letter }}(e, o)$ corresponding to second letter replaces both.
General operator: $\oplus_{1,1}(x, y)=z=z_{1} \quad$ when $x \in\{1$, $2\}, \mathrm{y} \in\{3,4,5,6\}$ $\oplus_{1,1,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=10 \quad$ when $\mathrm{y} \in\{3,4\}$
$\oplus_{1,1,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=11 \quad$ when $\mathrm{y} \in\{5,6\}$
2. uraṇ raparah || 1.1.51 ||

Rule: a or \bar{a} followed by r (short and long), ! -> guṇa letter (ar, al) corresponding to the second letter replaces both.
General operator: $\oplus_{1,2}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}=\mathrm{z}_{11} \mathrm{z}_{12}$ when $\mathrm{x} \in$ $\{1,2\}, \mathrm{y} \in\{7,8,9\}$
$\oplus_{1,2,1}(x, y): \mathrm{z}_{11}=1, \mathrm{z}_{12}=17 \quad$ when $\mathrm{y} \in\{7,8\}$
$\oplus_{1,2,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{11}=1, \mathrm{z}_{12}=18 \quad$ when $\mathrm{y} \in\{9\}$

vrddhi sandhi

3. vrddhireci || 6.1.88 ||

Rule: a or \bar{a} followed by $e, o, a i, a u->v r d d h i$ letter (ai, $a u$) corresponding to second letter replaces both.
General operator: $\oplus_{1,3}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}$ when $\mathrm{x} \in\{1,2\}$, $\mathrm{y} \in\{10,11,12,13\}$
$\oplus_{1,3,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=\mathrm{y}+2 \quad$ when $\mathrm{y} \in\{10,11\}$
$\oplus_{1,3,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=\mathrm{y} \quad$ when $\mathrm{y} \in\{12,13\}$
4. etyedhatyūthsu || 6.1.89 ||

Rule: In all the following rules, vrddhi letter ($a i, a u, \bar{a} r$, $\bar{a} l$) corresponâing to the beginning of second word, replaces both.
a. $\quad a$ or afollowed by the prepositions eti, edhati $->a i$ replades both
b. preposition pra followed by eṣah, esya -> ai ioplaces both
c Word sva followed by $\bar{i} r->$ ai replaces both
a or \bar{a} followed by the preposition $\bar{u} h ~->~ a u$ replaces both
word akṣa followed by word ūhini -> au replaces both
f. preposition pra followed by $\bar{u} h, \bar{u} d ̣ h->a u$ replaces both
General operator: $\oplus_{1,4}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}$ when $\mathrm{x} \in\{1,2\}$
$\oplus_{1,4,1}(x, y): z_{1}=12$ when $[y=10, Y \in\{10+41+3$, $10+28+1+41+3\}]$ or $[x=1, y=10, X \in\{43+17+1\}]$ or $[\mathrm{x}=1, \mathrm{y}=4, \mathrm{X} \in\{46+16+1\}, \mathrm{Y} \in\{4+17\}]$
$\oplus_{1,4,2}(x, y): z_{1}=13$ when $[y=6, Y \in\{6+14\}]$ or $[x$
$=1, \mathrm{y}=6, \mathrm{X} \in\{1+42+45+1\}, \mathrm{Y} \in\{6+14+3+23+3\}]$
or $[\mathrm{x}=1, \mathrm{y}=6, \mathrm{X} \in\{43+17+1\}, \mathrm{Y} \in\{4+17,4+27\}]$
5. etyedhatyūṭhsu \| 6.1.89 \|

Rule: In all the following rules, $v r d d h i$ letter ($a i, a u, \bar{a} r$, $\bar{a} l$) corresponding to the beginning of second word, replaces both.
a. $\quad a$ followed by word $r t a->\bar{a} r$ replaces both
b. preposition/words pra, vatsara, kambala, vasana, daśa, ṛ̣a followed by the word rṇa -> $\bar{a} r$ replaces both
General operator: $\oplus_{1,5}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}=\mathrm{z}_{11} \mathrm{z}_{12}$ when $\mathrm{x}=$ 1
$\oplus_{1,5,1}(x, y): z_{11}=2, z_{12}=y+10$ when $[y=7, Y \in$ $\{7+41+1\}]$ or $[\mathrm{X} \in\{43+17+1,16+1+41+46+1+17+1$, $42+1+20+30+1+18+1, \quad 16+1+46+1+23+\quad 1$, $33+1+44+1,7+22+1\}, Y \in\{7+22+1\}]$
6. upasargādṛti dhātau || 6.1.91 ||

Rule: a or \bar{a} at the end of prepositions followed by r-> $\stackrel{v r d d}{ }{ }^{2}$ letter $\bar{a} r$ replaces both. (The prepositions that qualify are: pra, parā, apa, ava, upa)
$\left\{\begin{array}{l}\{1,2\}, \mathrm{y}=7\end{array} \oplus_{1,6}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}=\mathrm{z}_{11} \mathrm{z}_{12}\right.$ when $\mathrm{x} \in$
$\oplus_{1,6,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{11}=2, \quad \mathrm{z}_{12}=\mathrm{y}+10$ when $\mathrm{X} \in$
$\{43+17+1,43+1+17+2,1+43+1,1+16+1,5+43+1\}$

pararūpa sandhi

7. eñi pararūpaì || 6.1.94 ||

Rule: a or \bar{a} at the end of a preposition followed by e or o (of a verbal root) -> second letter (e or o) replaces both.
General operator: $\oplus_{1,7}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}=\mathrm{y}$ when $\mathrm{x} \in\{1$, $2\}, \mathrm{y} \in\{10,11\}$
$\oplus_{1,7,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=\mathrm{y} \quad$ when $\mathrm{x} \in\{1,2\}, \quad \mathrm{y} \in$ $\{10,11\}, \quad \mathrm{X} \in\{43+17+1, \quad 43+1+17+2, \quad 1+43+1$, $1+16+1,5+43+1\}$

savarnadīrgha sandhi

8. akaḥ savarṇe dìrghah || 6.1.101 ||

Rule: a, i, u, r, l (short or long) followed by similar a, i, u, r, l (short or long) -> corresponding long letter replaces both.
General operator: $\oplus_{1,8}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}=\mathrm{y}$ when $1<=\mathrm{x}$ $<=9,1<=y<=9$
All operators $\oplus_{1,8, \mathrm{i}}$ are commutative.
$\oplus_{1,8,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=\mathrm{y}$ when $[\mathrm{x} \in\{1,3,5\}, \mathrm{y}=\mathrm{x}+1]$ or $[\mathrm{x}$ $\in\{2,4,6\}, y=x]$
$\oplus_{1,8,2}(x, y): z_{1}=y+1$ when $x \in\{1,3,5\}, y=x$
$\oplus_{1,8,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=8 \quad$ when $\mathrm{x}, \mathrm{y} \in\{7,8,9\}$

pūrvarūpa sandhi

9. eñah padāntādati || 6.1.109 ||

Rule: e or o followed by $a->$ first letter replaces both. General operator: $\oplus_{1,9}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{1}=\mathrm{x}$ when $\mathrm{x} \in$ $11\}, \mathrm{y}=1$
$\oplus_{1,9,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{1}=\mathrm{x}$ when $\mathrm{x} \in\{10,11\}, \mathrm{y}=1$

4.2 C_{2} Sandhi-s

yanādeśa sandhi

1. iko yaṇaci || 6.1.77 ||

Rule: i, u, r, l (short and long) followed by dissimilar vowel -> y, v, r, l respectively repré first letter.
General operator: $\oplus_{2,1}(x, y)=\underset{z_{2}}{ } y$ when $3<=x<=$ $9, \mathrm{y}<=13$
$\oplus_{2,1,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=15$ when $\mathrm{x} \in\{3,4\}, \mathrm{y} \notin\{3,4\}$
$\oplus_{2,1,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=16$ when $\mathrm{x} \in\{5,6\}, \mathrm{y} \notin\{5,6\}$
$\oplus_{2,1,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=17$ when $\mathrm{x} \in\{7,8\}, \mathrm{y} \notin\{7,8,9\}$
$\oplus_{2,1,4}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=18$ when $\mathrm{x} \in\{9\}, \mathrm{y} \notin\{7,8,9\}$

ayāya-avāva-ādeśa sandhi

2. ecoyavāyāvah || 6.1.78 ||

Rule: e, o followed by $\bar{a} c->a y, a v$ replace the first respectively;
$a i$, au followed by $a c->\bar{a} y, \bar{a} v$ replace the first respectively.
General operator: $\oplus_{2,2}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when $10<=\mathrm{x}<=13, \mathrm{y}<=13$
$\oplus_{2,2,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=1, \mathrm{z}_{22}=\mathrm{x}+5$ when $\mathrm{x} \in\{10,11\}, \mathrm{y}$ $!=1$
$\oplus_{2,2,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=2, \mathrm{z}_{22}=\mathrm{x}+3$ when $\mathrm{x} \in\{12,13\}$
3. vānto yi pratyaye \| 6.1.79\|

Rule: o, $a u$ followed by $y \rightarrow a v, \bar{a} v$ replace the first respectively.
General operator: $\oplus_{2,3}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when x $\in\{11,13\}, y=15$
$\oplus_{2,3,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=1, \mathrm{z}_{22}=\mathrm{x}+5$ when $\mathrm{x}=11$
$\oplus_{2,3,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=2, \mathrm{z}_{22}=\mathrm{x}+3$ when $\mathrm{x}=13$
4. ksayyajayyau śakyārthe || 6.1.81 ||
krayyastadarthe || 6.1.82 ||
Rule: e which is the end of words kse, je, kre followed by $y->a y$ replaces the first.
General operator: $\oplus_{2,4}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when x $=10, \mathrm{y}=15, \mathrm{X} \in\{42+45+10,29+10\}$
$\oplus_{2,4,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=1, \mathrm{z}_{22}=\mathrm{x}+5$

avaǹādeśa sandhi

5. avaì sphotāyàksya || 6.1.123 ||

Rule: o whech is the end of word go followed by a vowel -> ${ }^{3}$ replaces the first.
Genera Pperator: $\oplus_{2,5}(x, y)=z=z_{2} y=z_{21} z_{22} z_{23} y$ when $\mathrm{x}=11, \mathrm{y}<=13, \mathrm{X}=31+11$
$\left.\oplus_{2}, \mathrm{x}, \mathrm{y}\right): \mathrm{z}_{21}=1, \mathrm{z}_{22}=16, \mathrm{z}_{23}=1$

jaśtreasandhi

6~nalām jaśo 'nte || 8.2.39 ||
Rule: non-nasal mutes, sibilants, aspirate at the end of a word -> first letter replaced by corresponding column 3 letter.
General operator: $\oplus_{2,6}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $24<=\mathrm{x}$ $<=47, \mathrm{y}=0$
$\oplus_{2,6,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+5$ when $\mathrm{x} \in\{24,25,26,27,28\}$
$\oplus_{2,6,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}$ when $\mathrm{x} \in\{29,30,31,32,33,44$, $45,47\}$
$\oplus_{2,6,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-3$ when $\mathrm{x}=34$
$\oplus_{2,6,4}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-5$ when $\mathrm{x} \in\{35,37,38\}$
$\oplus_{2,6,5}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-7$ when $\mathrm{x}=36$
$\oplus_{2,6,6}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-8$ when $\mathrm{x} \in\{40,41\}$
$\oplus_{2,6,7}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-11$ when $\mathrm{x}=42$
$\oplus_{2,6,8}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-13$ when $\mathrm{x}=43$
$\oplus_{2,6,9}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-10$ when $\mathrm{x}=39$

satva sandhi

7. samaḥ suṭi || 8.3.5 ||

Rule 1: word sam followed by affixes $k r, k \bar{r}, k a r, k \bar{a} r$, $k u r->m$ of sam replaced with the combination $\dot{m} s$.
General operator: $\oplus_{2,7}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when x $=20, \mathrm{y}=42, \mathrm{X} \in\{46+1+20\}, \mathrm{Y} \in\{42+7,42+8$, $42+1+17,42+2+17,42+5+17\}$
$\oplus_{2,7,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=48, \mathrm{z}_{22}=46$
8. pumah khayyampare || 8.3.6 ||

Rule: word pum followed by column 1, column 2 which is in turn followed by a vowel, aspirate, semivowel or nasal -> ending m replaced with the combination $\dot{m} s$.

```
\(=20,34<=y<=43,1<=w<=23\)
\(\oplus_{2,8,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=48, \mathrm{z}_{22}=46\)
```

9. naśchavyapraśān || 8.3.7 ||

Rule: final n of a word except for the word praśān, followed by ch, $t h, t h, c, t, t$ which is in turn followed by a vowel, aspirate, semi-vowel or nasal -> ending n replaced with the combination $\dot{m} s$.
General operator: $\oplus_{2,9}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when x
$=\quad 23, \quad 36<=\mathrm{y}<=41, \quad 1<=\mathrm{w}<=23, \quad \mathrm{X} \quad \ddagger$ $\{43+17+1+44+2+23\}$
$\oplus_{2,9,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=48, \mathrm{z}_{22}=46$

visarga sandhi

10. kharavasānayorvisarjanīyah || 8.3.15 ||

Rule: r followed by hard consonant $->r$ replaced with visarga.
General operator: $\oplus_{2,10}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $\mathrm{x}=17,34$ $<=y<=46$
$\oplus_{2,10,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=49$

anusvāra sandhi

11. mo'nusvārah || 8.3.23 ||
mo rāji samaḥ kvau || 8.3.25 ||
Rule: m followed by any consonant -> m letter replaced by \dot{m} (anusvāra) (except in the case of the word sam being followed by the word $r \bar{a} t$)
General operator: $\oplus_{2,11}(x, y)=z=z_{2} y$ when $x=20$,
$14<=\mathrm{y}<=47, \mathrm{X} \in\{46+1+20\}, \mathrm{Y} \in\{17+2+40\}$
$\oplus_{2,11,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=48$
12. naścāpadāntasya jhali || 8.3.24 ||

Rule: n followed by a non-nasal mute, sibilant or aspirate (not at the end of a pada) -> n replacedxy \dot{m} (anusvāra).
General operator: $\oplus_{2,12}(x, y)=z=z_{2} y$ whan $x=23$, $24<=y<=47$
$\oplus_{2,12,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=48$
13. he mapare $v \bar{a}||8.3 .26||$

Rule: m followed by h which is in 0 wn followed by y, l, or $v->$ the first m replaced by nany y, l, v (i.e. $\dot{m} y, \dot{m} l$, $\dot{m} v)$ respectively.
General operator: $\oplus_{2,13}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when $x=20, y=14, w \in\{15,16,18\}$
$\oplus_{2,13,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=48, \mathrm{z}_{22}=\mathrm{w}$
14. napare nah || 8.3.27 ||

Rule: m followed by h at the end of a pada which is in turn followed by $n->m$ replaced by n.
General operator: $\oplus_{2,14}(x, y)=z=z_{2} y$ when $x=20, y$ $=14, \mathrm{w}=23$
$\oplus_{2,14,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{w}$

visarga sandhi

15. visarjanīyasya sah || 8.3.34 ||

Rule: visarga followed by hard consonant $->$ visarga replaced with s.

General operator: $\oplus_{2,15}(x, y)=z=z_{2} y$ when $x=49$, $34<=\mathrm{y}<=46, \mathrm{w} \in\{44,45,46\}$
$\oplus_{2,15,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=46$

ścutva sandhi

16. stoḥ ścunāh ścuḥ || $8.4 .40 \|$

Rule: dentals, s followed by palatals, s-> first replaced by its corresponding palatal, s respectively.
General operator: $\oplus_{2,16}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $\mathrm{x} \in\{41$, $38,33,28,23,46\}, \mathrm{y} \in\{39,36,29,24,19,44\}$
$\oplus_{2,16,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-2$ when $\mathrm{x} \in\{41,38,46\}$
$\oplus_{2,16,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-4$ when $\mathrm{x} \in\{33,28,23\}$

sțutva sandhi

17. ștunāh ștuh || 8.4.41 ||
toh ṣi || 8.4.43 ||
Rule: [dentals, s followed by cerebrals] or [s followed by s] -> dentals or s replaced by cerebrals or s respectively.
General operator: $\oplus_{2,17}(x, y)=z=z_{2} y$ when $x \in\{41$, $38,33,28,23,46\}, y \in\{40,37,32,27,22,45\}$
$\oplus_{2,17,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-1$ when $[\mathrm{x}=46]$ or $[\mathrm{y}!=45]$

anunāsikā ${ }^{\text {mas }} \boldsymbol{m i}$

18. yaro'unāāike'nunāsiko vā|| 8.4.45 ||

RuP- semi-vowels y, v and l followed by nasal -> first olaced by its corresponding nasal, $\dot{m} y, \dot{m} v, \dot{m} l$ respectively.
General operator: $\oplus_{2,18}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when $x \in\{15,16,18\}, 19<=y<=23$
$\oplus_{2,18,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{21}=48, \mathrm{z}_{22}=\mathrm{x}$
19. yaro'nunāsike 'nunāsiko vā\| 8.4.45 ||

Rule: semi-vowel r, mutes, sibilants followed by nasal -> first replaced by its corresponding nasal.
General operator: $\oplus_{2,19}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $17<=\mathrm{x}$ $<=46, \mathrm{x}!=18,19<=\mathrm{y}<=23$
$\oplus_{2,19,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}$ when $\mathrm{x} \in\{17,19,20,21,22,23$, 44, 45, 46\}
$\oplus_{2,19,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-5$ when $\mathrm{x} \in\{24,25,26,27,28\}$
$\oplus_{2,19,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-10$ when $\mathrm{x} \in\{29,30,31,32,33\}$
$\oplus_{2,19,4}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-13$ when $\mathrm{x}=34$
$\oplus_{2,19,5}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-15$ when $\mathrm{x} \in\{35,37,38\}$
$\oplus_{2,19,6}(x, y): z_{2}=x-17$ when $x=36$
$\oplus_{2,19,7}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-18$ when $\mathrm{x} \in\{40,41\}$
$\oplus_{2,19,8}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-20$ when $\mathrm{x}=39$
$\oplus_{2,19,9}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-21$ when $\mathrm{x}=42$
$\oplus_{2,19,10}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-23$ when $\mathrm{x}=43$

jaśtva sandhi

20. jhalām jaś jhaśi || 8.4.53 ||

Rule: non-nasal mutes, sibilants, aspirate followed by soft consonants (column 3, column 4) -> first replaced by corresponding column 3 letter.
General operator: $\oplus_{2,20}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $24<=\mathrm{x}$ $<=47,24<=y<=33$
$\oplus_{2,20,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+5$ when $24<=\mathrm{x}<=28$
$\oplus_{2,20,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}$ when $\mathrm{x} \in\{29,30,31,32,33,44$, $45,46,47\}$
$\oplus_{2,20,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-3$ when $\mathrm{x}=34$
$\oplus_{2,20,4}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-5$ when $\mathrm{x} \in\{35,37,38\}$
$\oplus_{2,20,5}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-7$ when $\mathrm{x}=36$
$\oplus_{2,20,6}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-8$ when $\mathrm{x} \in\{40,41\}$
$\oplus_{2,20,7}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-10$ when $\mathrm{x}=39$
$\oplus_{2,20,8}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-11$ when $\mathrm{x}=42$
$\oplus_{2,20,9}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}-13$ when $\mathrm{x}=43$

cartva sandhi

21. khari ca || 8.4.55 ||

Rule
___ : non-nasal mutes, sibilants, aspirate followed by hard consonants (column 3, column 4, sibilants) -> first replaced by its corresponding column 1 or sibilants.
General operator: $\oplus_{2,21}(x, y)=z=z_{2} y$ when $24<=x$ $<=47,34<=y<=46$
$\oplus_{2,21,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+18$ when $\mathrm{x}=25$
$\oplus_{2,21,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+16$ when $\mathrm{x}=26$
$\oplus_{2,21,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+15$ when $\mathrm{x}=24$
$\oplus_{2,21,4}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+13$ when $\mathrm{x} \in\{27,28,30\}$
$\oplus_{2,21,5}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+11$ when $\mathrm{x}=31$
$\oplus_{2,21,6}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+10$ when $\mathrm{x}=29$
$\oplus_{2,21,7}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+8$ when $\mathrm{x} \in\{32,33,34,35\}$
$\oplus_{2,21,8}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x}+3$ when $\mathrm{x} \in\{36,37,38\}$
$\oplus_{2,21,9}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{x} \quad$ when $39<=\mathrm{x}<=47$

parasavarna sandhi

22. anusvārasya yayi parasavarṇah || 8.4 .58 ||

Rule: anusvāra followed by semi-vowels, mutes -> $\overline{\text { anusvāra replaced by the nasal equivalent of the }}$ second.
General operator: $\oplus_{2,22}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $\mathrm{x}=\mathbf{4}$,
$15<=y<=43$
$\oplus_{2,22,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=20$ when $\mathrm{x} \in\{16,17\}$
$\oplus_{2,22,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}$ when $\mathrm{x} \in\{15,18,19,2 \% 21,22$, 23\}
$\oplus_{2,22,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-5$ when $24<=\mathrm{x}$
$\oplus_{2,22,4}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-10$ when $29<=33$
$\oplus_{2,22,5}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-13$ when $\mathrm{x}=34$

$\oplus_{2,22,7}(x, y): z_{2}=y-17$ when $\rightleftharpoons 36$
$\oplus_{2,22,8}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-18$ when $\mathrm{x} \in\{40,41\}$
$\oplus_{2,22,9}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-20$ when $\mathrm{x}=39$
$\oplus_{2,22,10}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-21$ when $\mathrm{x}=42$
$\oplus_{2,22,11}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}-23$ when $\mathrm{x}=43$
23. torli || 8.4.60 ||

Rule 1: dentals except n followed by $l->$ dentals replaced by l.
General operator: $\oplus_{2,23}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{z}_{2} \mathrm{y}$ when $\mathrm{x} \in\{41$, $38,33,28\}, \mathrm{y}=18$
$\oplus_{2,23,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{2}=\mathrm{y}$
24. torli || 8.4.60 ||

Rule 2 : n followed by $l->n$ replaced by nasal l (i.e. $\dot{m} l$).
General operator: $\oplus_{2,24}(x, y)=z=z_{2} y=z_{21} z_{22} y$ when $\mathrm{x}=23, \mathrm{y}=18$
$\oplus_{2,24,1}(x, y): z_{21}=48, z_{22}=y$

4.3 C 3 Sandhi-s

ścutva sandhi

1. stoḥ ścunāh ścuh || 8.4.40 ||
śāt || 8.4.44 ||
Rule: [palatals followed by dentals, s] or [s' followed by s] -> second replaced by palatals or s respectively.
General operator: $\oplus_{3,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{xz}_{3}$ when $\mathrm{x} \in\{39$, $36,29,24,19,44\}, \mathrm{y} \in\{41,38,33,28,23,46\}$
$\oplus_{3,1,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{y}-2$ when $[\mathrm{y}=46]$ or $[\mathrm{x}!=44, \mathrm{y} \in$ $\{41,38\}]$
$\oplus_{3,1,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{y}-4$ when $\mathrm{x}!=44, \mathrm{y} \in\{33,28,23\}$

sṭutva sandhi

2. ștunāh ștuh || 8.4.41 \|
na padāntāṭtoranām || 8.4.42 ||
Rule: s followed by dentals, s-> dentals, s replaced by cerebrals, s respectively.
General operator: $\oplus_{3,2}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{xz}_{3}$ when $\mathrm{x}=45, \mathrm{y}$ $\in\{41,38,33,2823,46\}$
$\oplus_{3,2,1}(x, y): z_{3}<y-1$

pūrvasavarṇa sandhi

3. jhayo he atarasyām || 8.4 .62 ||

Rule: non-nasal mutes followed by $h->h$ replaced by the aspirate letter (column 4) corresponding to the first
non-hasal mute.
Seneral operator: $\oplus_{3,3}(x, y)=\mathrm{z}=\mathrm{xz}_{3}$ when $24<=\mathrm{x}$ $=43, y=47$
$\oplus_{3,3,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}$ when $24<=\mathrm{x}<=28$
$\oplus_{3,3,2}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}-5$ when $29<=\mathrm{x}<=33$
$\oplus_{3,3,3}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}-8$ when $\mathrm{x}=34$
$\oplus_{3,3,4}(x, y): z_{3}=x-10$ when $x \in\{35,37,38\}$
$\oplus_{3,3,5}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}-12$ when $\mathrm{x}=36$
$\oplus_{3,3,6}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}-13$ when $\mathrm{x} \in\{40,41\}$
$\oplus_{3,3,7}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}-15$ when $\mathrm{x}=39$
$\oplus_{3,3,8}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=\mathrm{x}-16$ when $\mathrm{x}=42$
$\oplus_{3,3,9}(x, y): z_{3}=x-18$ when $x=43$

chatva sandhi

4. śaścho 'ṭi || 8.4.63 ||

Rule: non-nasal mutes followed by \dot{s} which is in turn followed by a vowel, aspirate or $y, v, r \rightarrow \dot{s}$ replaced by ch.
General operator: $\oplus_{3,4}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{xz}_{3} \quad$ when $24<=\mathrm{x}$ $<=43, \mathrm{y}=44,1<=\mathrm{w}<=17$
$\oplus_{3,4,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{3}=36$

4.4 C_{4} Sandhi-s

tugāgama sandhi

1. che ca || 6.1.73 ||
äǹmāñośca || 6.1.74 ||
dīrghāt || 6.1.75 ||
padāntādvā || 6.1.76 ||
Rule: vowel followed by $c h->t$ added.
General operator: $\oplus_{4,1}(x, y)=\mathrm{z}=\mathrm{xz}_{4} \mathrm{y}$ when $\mathrm{x}<=13$, $\mathrm{y}=36$
$\oplus_{4,1,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{4}=41$

dhuḍāgama sandhi

2. dah si dhut || 8.3.29 ||
naśca || 8.3.30 ||
Rule
$\ldots \quad$ _ $: d$ or n followed by $s->d h$ added.
General operator: $\oplus_{4,2}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{xz}_{4} \mathrm{y}$ when $\mathrm{x} \in\{23$, $32\}, \mathrm{y}=46$
$\oplus_{4,2,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{4}=28$

tugāgama sandhi

3. śi tuk || 8.3.31 ||

Rule: n followed by s $->t$ added.
General operator: $\oplus_{4,3}(x, y)=z=x z_{4} y$ when $x=23, y$ $=44$
$\oplus_{4,3,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{4}=41$

$\dot{n} a m u d ̣ a \bar{a} a m a ~ s a n d h i$

4. $\dot{n} a m o ~ h r a s v a ̄ d a c i ~ n ̃ a m u n ̣ n i t y a m ~||~ 8.3 .32 ~|| ~$

Rule: Short vowel precedes \dot{n}, n, n which is followed by vowel -> \dot{n}, n, n get duplicated.
General operator: $\oplus_{4,4}(x, y)=z=x_{4} y$ when $x \in\{21$, $22,23\}, 1<=y<=13, u \in\{1,3,5,7,9\}$
$\oplus_{4,4,1}(\mathrm{x}, \mathrm{y}): \mathrm{z}_{4}=\mathrm{x}$

4.5 C ${ }_{5}$ Sandhi-s

svādi sandhi

1. etattadoḥ sulopo'koranañsamāse hali || 6.1.132 ||

Rule: word essah or sah followed by a consonant -> visarga (end h) of first word dropped.
General operator: $\oplus_{5,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$ when $\mathrm{x}=49,14$
$<=y<=47, \mathrm{X} \in\{10+45+1+49,46+1+49\}$
$\oplus_{5,1,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$
2. so'ci lope cetpādapūraṇam || 6.1.134 ||

Rule: word sah followed by a vowel -> the final visarga of first word optionally dropped.
General operator: $\oplus_{5,2}(x, y)=z=y$ when $x-\sqrt[49]{ }, 1<=$ $\mathrm{y}<=13, \mathrm{X}=46+1+49$
$\oplus_{5,2,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$
3. lopaḥ śākalyasya || 8.3.19 ||

Rule: final v or y preceded by a orand followed by a vowel, semi-vowel, nasal, columat or column $4->$ the v or y is dropped.
General operator: $\oplus_{5,3}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$ when $\mathrm{x} \in\{15$,
$16\}, 1<=\mathrm{y}<=33, \mathrm{u} \in\{1,2\}$
$\oplus_{5,3,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$
4. oto gārgyasya || 8.3.20 ||

Rule: y preceded by o and followed by a vowel, semivowel, nasal, column 3 or column 4 -> the y is dropped.
General operator: $\oplus_{5,4}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$ when $\mathrm{x}=15,1<=$ $\mathrm{y}<=33, \mathrm{u}=11$
$\oplus_{5,4,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$
5. hali sarveṣām || 8.3.22 \|

Rule: y followed by consonant $->y$ dropped.
General operator: $\oplus_{5,5}(x, y)=z=y$ when $x=15,14$
$<=y<=46$
$\oplus_{5,5,1}(\mathrm{x}, \mathrm{y})=\mathrm{z}=\mathrm{y}$

The aphorisms presented above encompass four out of the five major sandhi divisions that exist in Sanskrit as per Pāṇini - vowel, consonant, prakrtibhāva (no change and hence not dealt with here), visarga and svādi. The vowel sandhi-s have been extensively dealt with above, with all exceptions to main rules incorporated. In the other divisions, only the main sandhi-s have been covered. Furthermore, listing of the same aphorism twice was necessitated by the need for different general operators for different rules within the same aphorism.
It is noteworthy that the sandhi-s have not been presented under these five divisions, but in the order of the categories introduced in this paper. Furthermore, since the order of aphorisms is crucial to determining the sequence of firing of the rules, Pānini''s numbering (given as aphorism number for each aphorism) has been maintained, albeit only within each category.

5. Conclusions

In spite of therc 0 ing almost 2500 individual letter-level rules (Table 2 this new schema that directly maps the patterning in the Paṇinian aphorisms in a simple and effective way, ensures that we arrive at a total of just 110 equations. Clearly, this is a computationally lean way of calculating the result of sandhi operations. The results represent a computational model to process a majority of the elphonic conjunctions in Sanskrit. The work also dofonstrates the simplicity with which euphonic Zeñjunctions can be handled by adopting Pānini's precise scheme for rule representation.
A main strength of this modeling approach is that it is deterministic, as against the probabilistic methods adopted till now for sandhi operations. Determinism is inherent in Pāṇini's sandhi rules, which indeed specify how sandhi-s are formed and not how they are broken up, and this determinism has been uniquely tapped and modeled in this work. Traditional AI methods such as hidden Markov models, which have hitherto been applied for Sanskrit processing [3-7], assume relevance in the sandhi-splitting approach in which there are inherent ambiguities, rather than in the sandhi-building approach which is modeled here.
The five main operators and all the 110 derived equations designed and presented in this work, form the immediate basis for directly realizing crucial applications of sandhiprocessing such as subtext searching.

References

[1] Briggs Rick, "Knowledge Representation in Sanskrit and Artificial Intelligence", RIACS, NASA Ames Research Center, AI Magazine, 1985.
[2] Dīkṣita Bhaț̣oji, Siddhānta-kaumudī, Translated by Śrīśa Candra Vasu, Volume 1, Motilal Banarsidas Publishers, Delhi, 1962.
[3] Huet Gérard, "Automata Mista", Festschrift in Honor of Zohar Manna for his 64th anniversary, Taormina,

